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TECHNICAT. MEMORANDUM 1381

ON THE DETERMINATION OF CERTATN BASIC TYPES OF
SUPERSONIC FLOW FIELDS¥*

By Carlo Ferrari
SUMMARY

A quite universal mode of attack on problems which arise in super-
sonic flow, whether connected with flow over wings or over bodies of
revolution, is explained, first, in great generality, and then in more
detail, as specific gpplications to concrete cases are illustrated. The
method depends on the use of Fourier series in the formal definition of
the potential governing the flow and in the setting up of the boundary
conditions. This new formulation of the many problems met in supersonic
flow 1s really an extension of the doublet type of "fundamental solution"
to higher order types of singularity. The limitations and, in contrast,
the wide field of epplicability of such & means of handling these prob-
lems with complex boundary conditions is discussed in some detail, and
a specific example of a wing-body interference problem 1s cited as proof
of the versatility of the method, because the resiilts obtained by =pplying
the techniques expounded herein sgree well with experimentally determined
datea, even for the quite complex configuretlon used to exemplify the kind
of problem amenable to such treatment.

1. INTRODUCTION

For purposes of analytic treatment of the flow problem to be con-
sidered here the ususl rectangular Cartesian coordinate system is employed
with the x~-axis taken to lie in the direction of and;g?ving the same sense

as the uniform (undisturbed) free-stream velocity, V,. This free-stream

—>
velocity, Ve, is taken to be supersonic in the discussion that follows;

i.e., Vo> Cyx where C, denotes the veloeity of sound in the undis-
turbed streem. The flow of the gaseous fluid to be investigated is to

*
"Sulle determinszione di alcuni tipi di campi di corrente iper-
sonora," Rendiconti dell'Accademis Nazionale dei Lincei, Classe 4i
Scienze fisiche, matematiche e naturalil, serie VIII, wvol. VII, no. 6;

‘read at the meeting held on December 10, 1949.
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be congidered as resultlng from the superposition upon the free-stream
velocity of a nonuniform flow, having velocity components that are des-
ignated as Vg, Vy, and VZ,'énd lying in the direction of the respec-
tive axes (x,y,2z) of the coordinate system. This nonuniform super-
imposed flow 1s supposed to be small enough, in comparison with the
speed of sound, C,, that it is permissible to neglect the ratios Vx/bm,

V&/Cw, etc. in the equations governing the flow.

It is teken for granted that, under the conditions stated above,
there exists a velocity potential describing the flow in question, and
in practically all cases which are of any lnterest for actual designs
it will really be true that this assumption can be mrnde legitimately.
If it is then agreed that the nonuniform superimposed part of the flow
is to be denoted by the potential ¢, 1t will be recognized that this
potential will have to satisfy the relationship:

2 2 2
Cond B o

where the free-stream Mach number, M, is defined as M, = V'OO/C°° and,

of course, the potential ¢ will also have to obey the boundary condl- .
tions which are peculiar to each stated problem.

A way of handling the determination of the funection ¢, so that it *
will satisfy equation (1) and so that it will obey the imposed boundary
conditions, will now be explained, and its usefulness illustrated by
consideration of problems which can be attacked by this means, both in
the case of lifting surfaces (that is, wings) as well as in the case of
bodies of revolution. The proposed method is based on the use of Fourier
series. Although this technique does not afford complete universality
in treatment of all the posed problems, as will be more clearly pointed
out in what follows, it can be used to fine advantage in a goodly number
of situations by replacing the procedures which are based on the Fourier
or the Laplace transforms (which, for that matter, have just as restricted
limits of applicability as the analogous ones which arise in connectlion
with the approach being discussed herein) or by being substituted in
place of the techniques which stem from use of the "fundamental" (source,
sink, doublet) solutions to equation (1), or from use of transformations
carried out in the -complex plane.

2. PROBLEMS HAVING TO DO WITE FLOW OVER WINGS

As usual, the wings are imagined to be very slender and so placed .
that the wing span lies along the y-asxis; l.e., the long dimension is
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out the y-axis (see fig. 1). ILet the equations which define the ventral
and dorsal surfaces of the wing surface be, in fact, given in the form:

z = zv(x,y) and z = Zd(x,Y)

and then the slenderness of the wing is supposed to be slight enough
that the gbove-defined values of 2z will be so small at all locations
on these surfaces as to make it possible to accept the fact that the
derivative %ﬁ is, to all intents and purposes, equal to the direction
cosine, with respect to the free-stream x-axis, of the normal to the
surface. It is further assumed that the wing is immersed in g stream

of supersonic flow which has g constant value for its component lying
in the direction of the x-axis, of magnitude Vx. The component in the
direction of the z-axis, meanwhile, is assumed to be known, but of rela-
tively small size in comparison with the V, velocity, and it may tske
on various vaelues, which will be denoted by V,'. If, now, the potential

deseribing the flow perturbed by the wing is denoted by ¢ this poten~
tial will have to satisfy equation (1), and it will also have to conform
to the conditions which are imposed at the boundaries. These further
(boundery) conditions msy be stated as follows:

(2) Upstream of a certain surface, which may be immediately defined
Just as soon as the wing-like body is specified which is to invest the
impinging stream, the value of ¢ is zero; i.e., the basic condition is

g=0 (2)
(3) On the wing surface, it must be true that

(§§>z=0 = Vo gi -V, cos (2,2) = B(x,y) (3)

wherein the value of 2z to be employed is either the zy or zg quanti-

ties, depending on whether one is concerned with a point which is lying
on the under ventral surface or on the upper dorsal surface, respectively.

The notation cos (2,2) signifies the cosine of the angle between the
z-axls and the unit vector taken in the direction of the exterior normsl
to the wing surface in question; i.e., this vector is represented by the
vector n, and under the present hypothesis cos (n,z) = tl.
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It is convenient to distinguish between two basic types of problem
which come under this kind of sanalysis, and to meke the differentiation
on the basis of the sort of boundary conditions met with in each type;
that is,

Symmetric Types of Conflguration

In this case, the boundary conditions to be satisfied on the wing
mey be expressed in the form

(92) - H(x,¥) (3')
z=0%

dz

and

(-S;Z) - = -H(x,¥)

Asymmetric Types of Configuration

In this case, the boundary conditions are expressed as

The first type of problem corresponds to a configuration for which
the wing has a zerqagngle of attack with respect to the free-gtream

undisturbed flow, V,, and which possesses a symmetric profile. The sec-
ond type of problem corresponds to a configuration for which the wing
is a flat plate, but which has any local angle of attack whatsoever,

with respect to the free-stream vector, V., sO long as it is small.
3. DEVELOPMENT OF THE CASE OF THE SYMMETRIC TYPE OF CONFIGURATION

In this case it will suffice to examine the flow solely in the

upper half-plene, where z > 0. If ¢(l)(x,y,z) stands for the flow

which takes place in this upper region, and if ¢(2)(x,y,z) represents
the flow 1n the nether region, then, of course,

¢(2)<x,y>z) = ¢(l) (x,5,-2)
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The boundary conditions in this case are composed of equations (3'),
together with the restriction that

(1)
GZQ——— = 0 (for locations lying beyond the region
9 /0 occupled by the wing surface) (2")

Now let the definition of the function describing the velocity com-
ponent at the wing surface, and also the potential function itself, be
cast into the convenient forms

B*(x,y) = V, :E: En (%) cos Qﬁ?y =V, EZ:_Em(g) cos g-mn
T m

and

¢(l)(x;Y:z) = ¢(l) = Vo b g ¢m(§:§) cos %m'rl ()"')

wherein ¢ = x/b, 7 = y/b, and ¢ = z/b, vhile Db is a suitable length
used for purposes of nondimensionalizgtion. The value used for b will
be equal to the semispan of the wing in the case where the leading edge
of the wing 1s supersonic everywhere, and provided that the wing tips
are cut off in such a way that the wing surface remsins outside of the
tip Mach cones emasnating from either one of the wing-tip extremities out
at the farthest reaches of the wing span. The value used for b will
be larger than this semispan Just defined, if, in contrast, these geo-
metrical relationships do not hold; the magnitude employed for b in
this latter case is illustrated in figure 2.

Finally, it should be observed that H¥ 1s a periodic function
of y, which is equal to the values tsken on by the fumction H at the
wing's surface and it is zero for points lying out of this region, and
this definition is to hold throughout the spanwise interval for which
b Sy <o

The fact that it is possible to write H¥(x,y) in the form given
as equation (&) (i.e., the possibility of expressing the component-
velocity field describing the normal velocities to the wing surface by
means of a Fourier serles insteaed of in terms of a Fourier integral)
stems from the property already noted to the effect that the perturba-
tions, which are created at any arbitrary point P(x,y) whatsoever, do
not maske themselves felt anywhere outside of the Mach cone emansting
from P. As a result of this situation, therefore, as far as the



6 NACA TM 1381

determination of the field of flow about the given wing is concerned, it
makes no difference to this flow whether one consliders the wing to be
operating by itself as an isolated entity within the impinging stream or
whether, instead, one imagines it to be accompanied by an infinite number
of reflections of this primary wing in the planes y = tmb.

If one now inserts the second of the expressions glven as equa-
tion (4) into equation (1), it will be seen that this differential equa-
tion reduces to

Py o Py o
%2 S a2 L (5)

wherein B2 = M2 - 1 and wheré k replaces the constant %?.

Meanvhile, it 1s also evident that, on the bagis of the first of
the formal developments given as equation (%), the boundary condition

reduces to
a¢m) _
(——ag o = ) (6)

The expression-given as equation (5) gbove is formally analogous to
the so-called "telegraph equation,” and its solution, which is suitable
for applying the type of boundary condition exemplified in equation (6),
1s

¢m=

[o:] 2

£ -Bt
L by (g ") Jo[lg Vie-e)2 - Bagﬂ ag’ (7)

where Jg 1s the cylindricael Bessel function of zeroth order.

Consequently, the vertical derivative turns out to be

¢ -B¢ dg !
= xh (£-BL) + k¢ (£') g [% (£-£1)2 - Bzc"j
J'Ehm T L % 1 B f . f(g-gx)g_Bzcg

Fu
ot
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and, because of the boundary condition (6), it follows that
_ .1
by = -z Hn

80 that the sought potential must have the form
1 §-BE
¢m=“§j; Bp(g )do At (7")

. DEVELOPMENT OF THE CASE OF THE ASYMMETRIC TYPE OF CONFIGURATTION

x

The possibility of being able to find solutions to such asymmetric
problems by means of the method belng propounded here is restricted in
this case to those configurations for which the leading edge as well as
the trailing edge of the wing are supersonic, and where the wing tips
are cut off in such a way that the wing surface lies outside of the Mach

cone emanating fram the very tip of the leading edge where the maximum
span occurs.

Under these circumstances the boundary conditions are constituted
from the restrictions given as equations (3"), and of equation (2')
once gsgain. If one then follows the same procedure as was utilized in
section 3, it follows that the expression for the sought potential is
formally given as (ref. 1)

t-Bt| [: ] a
- ) . k _g1)2 _ p2¢2
B ﬂhmE Big-l\ * "kgj; (s )3 s - 812 - B2 J(ee 222

®)

where hy,, 1is, a priori, an undetermined function, and where it should

be recognized that the + sign is to be employed for the lower half-plane
where { < O, and where the - sign is to be employed for the upper half-
plane where { > 0. It is evident, therefore, that the derivative of ¢m

with respect to ¢ will be continuous along the plane ¢ = O, but the
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derivetive of Qm wlth respect to E will be dlscontinuous, and the
"Jump" will be of such size that

(%Z% L=0* o (g—fm> £=0~

holds true.

It is8 clearly permissible here ‘again to concentrate attention solely
upon the disturbed flow in the upper half-plane where € > 0, therefore,
because the observation just made above will tell one how to compute what
the flow will be in the other lower half-plene, once the former is
obtained.

The boundary conditions in this instance may now be recast into the
form

. g k)
Bhy (8 ) +:r-1-‘32-f0 n(E') Jo (k .L;».) Q' -
6 e\ L
o [ i n (gt e - e

provided, as in the previous sectlon, one sets up the convenient con-
vention that G*(x,y) 1s to represent a periodic function in y that

is to be equal to the values taken on by the function G(x,y) at the
wing's surface, and it is to be zero for points lying out of this region.
This definition is to hold throughout the spanwise interval for which

-b £y <Db. In addition, the form of G*%(x,y) is to be assumed, specif-
ically, to have the appearance

&*(x,5) = Voo > Gy(8) cos L mn
m

while it has glso been assumed that the derivative of a function by the
sole paraemeter upon which it depends 1is to be denoted by a dot over the
function, that is,

i (8) = oom
n(E) = z
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The integro~differential equation defining h, may also be immedi-
ately simplified to the compressed expression

: :
thm(g)mg—ij; (8 ') (Jo + Jp)a& " = Gy(t) (9)

Now apply a laplace transformetion to this integro-differentisl
equation (:L.e. , multiply through by the factor e P8 ana integrate

from O to «). Thus, one obtains
2
‘/2 k2
(P +§2"‘; 3
Gm

_ 2
thmp+rc]‘é‘—ma 1 +
2, KB e, B
T B2 B2

where a bar over a symbol serves to indicate that this quantity stands
for the lLaplace transform of the functlon so designated.

Standard tables of lLeplace transforms could be consulted to check
these results, which may now be simplified by noting that

2
2 k2 ) ka 2 ka 2 2 k2
+ == - + + + - +
1 +(VP B2 _BETY it E m By r
02 4 K2 K2 o, K2 k2 fo . K2
BB g B2 B2 B2

i
N
Wml N
=~
’Ul\)
+
"“’ml""mi
[
~E

Thus the Laplace transforms of equation (9) simplifies to

:er'ﬁm+:rB<,‘p2+l]§—g-- ) hm = Gm

or the explicit expression for the Laplace trensform of the unknown func-
tion hy is given in the form
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80 that finslly one masy Ilnvert the transformation to obtaln
l § t k ? 1
by = = Gm(t ' )J0 l—(e-g) ag (10)
%B 0 B

Once having obtained the value of hy, it is easy to write down the

expression for the component of velocity lying in the x-direction and
located st the wing-surface, because one has simply that this component

is given by the partial derivative of the potential ¢, taken with respect
to ¢, and evaluated at the plane of the wing; i.e., one finds that

a [
(¥)§=0 = Vcog (—a—fl‘i)g=o cos -’et-mn = =V Z by (&) cos %m.q

m

Furthermore, the formula glving the 1ift on the wing is Just
m+dl
2.2 2 h,(1/b)
L = 8p,V b Em (-1) S (11)

for m=1,3,5,. . ., etc.

where the symbol, 1, 1s used to denote the distance along the x-~axis
measured back from the leading edge of the root chord to the projection
into the plane of symmetry of the trailing edge of the wing-tip profile.

In regard to the moment taken about the y-axis, it is spparent that
it may be computed from the relation:

1/
My anmvm2b5§ fi cos (ﬂm %) dnvé/ FMPLT
m -

m+l

2 S (@ b @) - [Tt 4 o2

for m=1,3,5,. . ., ete.
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5. PROBLEMS HAVING TO DO WITH FLOW PAST BODIES OF REVOLUTION

The procedure discussed in the preceding sections can be extended at
once to apply also to the solution of problems which are concerned with
the filow over bodiles of revdlution.

For this purpose let a cylinarical coordinste system (x,Y,e) be
set up, and then the equation which governs the potential, ¢ , being
sought will have the form

P 1B, 1P P
2 IR T w2 &)

Now let R = R(x) be the equation of the meridian line of the body,
and let it be assumed that R is sufficlently small at gll locations
along the body so that the direction cosine of the normal to this merid-
ien line, measured from the Y-axis, may be taken to be equal to unity.

Furthermore, let Vpy' stand for the camponent, teken 1n g direc-

tion perpendicular to the circular cross-section of the body, which
arises from the impinging fiow which invests the body. Then the boundsry
condition which must be satisfied at the surface of the body may be
expressed mathemsticelly by the relation

(Pl ™

For sake of simpliclity, it 1s also now assumed that the treatment
to be developed is to be restricted to the case where symmetry with

respect to the semiplanes © =ig existe in the incident flow. Under

this hypothesis it is convenient to write the normal veloclty components
and the potential being sought in the followling expliclt formulstions:

Vo' —VMZFm(%) sin m © a
m

s (14)

S
|

=V, Z ¢m(x,Y)Ym sin m 6
i

./
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If one now inserts the second of the expressions given as equa-
tion (14) into the differential equation governing the flow (13), it
wll)l be found thet the defining equation for the potentisl will have
the form

224 L,
ek ek bbb (15)

and the boundary condition turns out to be

() ) = -Fp (15")

oY Y=R

A suiteble sdolution to equation (15), which can be made to satisfy
the boundsry condition being imposed as equation (15'), will be found
to be

m
where
o
¢O =“/p . X fo(x-BY cosh u)du
arc cosh —

BY
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Thus, the successive individuasl potentials are given by the expresasiontsl

0 Yy
Y@, = -B f . £1(x-BY cosh u) cosh u du
arc cosh e
0
Y¢2 = B2 f < fo(x-BY cosh u) cosh? u du > (1)
arc cosh 5
ete.
./

Upon imposition of the requirement that the boundary condition (15')
is to be satisfied, one obtains a set of integral equations which serve

l‘I‘ranslator's note: It was pointed out on page 630 of an article
by R. H. Cramer in the Journal of the Aeronautical Sciences, vol. 18,
no. 9, September 1951, entitled "Interference Between Wing and Body at
Supersonic Speeds - Theoretlcal and Experimental Determination of
Pressures on the Body," that the result given here for @, for m > 1,
is incorrect; the correct formula is, for m = 2,

O
Y2¢2 = 82 f f5(x-BY cosh u) (2 cosh? u - l) du
Yarc cosh 'BXY

while, in genersl, the use of hyperbolic functions of multiples of the
argument u gives a more compact form, which is easy to work with; i.e.,
in general it is true that

Y, = Bo(-1)" /O £y, (x-BY cosh u) (cosh m w du

X
arc cosh —
BY
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to determine the arbitrary functions 'ﬁm, which are a priori unknown.
Thus, applying these conditions, one finds that?

0
po+l (-l)m‘*‘lh/h T, (%-BR cosh u) (cosh w)2l gy = ~F, (18)

X
arc cosh =
BR

The determination of the values of the fm's appearing in formula (18)

may be carried out by using a step-by-step procedure which is entirely
anglogous to the one employed by Von Kérmén in his work on determining
the flow about a body of revolution at zero angle of attack.

It is important to point out that 1f one only has in mind to calcu-
late the force distribution along the axis of the body and the corre-
sponding moment, and if one is not interested in knowing the local veloci-
ties or pressures around the body, then it is merely necessary to
calculate @$, and @o.

6. APPLICATIONS

The procedure that has been propounded sbove has been applied (ref. 2)
to the situation arising in the study of the question of wing-body inter-
ference. The wing-body configuration considered in thils particular appli-
cation of the method i1s deplcted in the appended figure 3.

The wing used in this configuration is a flat plate, whose semispan
is equal to hRO, where Ry 1s the radius of the circular cross-section

taken through the body at the location where the body is wldest. The
leading edge of this wing is located 5Rp downstream from the tip of the

nose of the body. The free-stream flow is implnging on the body at a
speed which is twice the gpeed of sound in the undisturbed stream.

2Translator's note: In view of the correction pointed out in Note 1
above, it will be seen that this formula for determining the fj functions
is also incorrect, except for m = 1l; for higher integrsl values of m,
the correct formula is:

po+l (Lpym+l JFO £ (x-BR cosh u) [éosh m u cosh él du = -Fy

X
arc cosh R
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The curves shown in figure 3 glve the value of the pressure coeffi-

cient, P_“—Eg, out along the spen of the wing, in the mid-chord loca-
lé‘f:’zar."vco

tion (i.e., along the wing axis), for points on the upper (dorsal) side

of the wing. These coefficients have been calculated by the method out-

lined in section L4, and there are shown results for various angles of

attack, which apply to such points on the upper side of the wing pro-

files gt their mid-chord positions.

In addition, some experimental test points obtained by R. H. Cramer
(see ref. 2) are also plotted on these curves. These results were
obtained from experiments carried out in the supersonic tumnel of the
Daingerfield Aeronsutlical Laboratory.

The agreement between the computed and experimentally determined
results is very good from a qualitative viewpoint. In regard to the
more precise detalls of the quantitative comparison between the results
1t is worthy of note that the experimental results exhiblt a certain
amount of dissymmetry as one passes from positive angles of attack to
negative angles of attack. Such a dissymmetry cannot be predicted, or
should not be expected, from the type of theoretical treatment being
considered here.

In order to bring about a more valid comparison of these results,
it would appear logical, in face of such evident dlssymmetry, to take
for the representative experimental value, at a glven value of the angle
of attack, B, the one which is obtained from averaging the result
obtained for an angle of attack equal to +f with the result obtained
at -B. BSuch average values have been computed and sre designated in
the plots of figure 3 by means of solid clrcles. These adjusted values
lie much closer to the theoretically derived curves at almost all
locations.

¥

Translated by R. H. Cramer
Cornell Aeronsutical Laborastory, Inc.
Buffalo, New York
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Figure 1.~ Orientation of coordinate axes and location of typical wing
plan form therein.

Figure 2,~ Definition of the interval of periodicity required for application
of the Fourier series technique when leading edges are subsonic,
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Figure 3,- Pressure distribution along the wing axis: Comparison of
experimental results with predictions based on the method expounded
in section 4.
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